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Abstract
We give a systematic development of the theory of the radiation field of an
accelerated charged particle with reference to an inertial reference frame in
flat spacetime. Special emphasis is given to the role of the Schott energy and
momentum in the energy–momentum balance of the charge and its field. It is
shown that the energy of the radiation field does not, in general, come from the
work performed upon the charge by an external force. The radiation energy
also receives a contribution from a conversion of the velocity dependent near-
field to the acceleration dependent radiation field. We also exhibit the role of
momentum conservation in connection with a radiating electric charge and its
electromagnetic field.

1. Introduction

In terms of classical (non-quantum) electrodynamics we shall give a systematic treatment
showing how energy and momentum are stored and transformed when a charged particle
is performing an arbitrary, accelerated motion. Our main points are (i) to give a clear
presentation of the general theory and (ii) to demonstrate the significance of the Schott energy
and momentum in the energy and momentum budget of a radiating charge. In particular, we
shall show how transformation between Scott energy–momentum and radiation field energy–
momentum takes place in the case where the charge performs a uniformly accelerated motion.
The problems about radiation from a charged particle performing this type of motion have
been discussed by several authors for a long period of time [1–10]. The special case where
the charge moves with constant velocity along a curved, for example circular motion, path is
also considered. In these cases the radiated energy is supported in quite different ways.
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1.1. The general theory of an accelerated charge and its electromagnetic field

The particle produces a field propagating on its future light cone. The field tensor Fµν is
written as the sum of a generalized Coulomb field, F

µν

I , and a radiation field, F
µν

II ,

Fµν = F
µν

I + F
µν

II . (1)

The field F
µν

I is independent of the acceleration, and F
µν

II is of first order in the acceleration.
Inserting equation (1) in the expression of the energy–momentum tensor for an

electromagnetic field,

T µν = 1

4π

(
Fµ

α F να − 1

4
gµνFαβF αβ

)
(2)

we get, in Teitelboim’s notation [11]

T µν = T
µν

I + T
µν

II (3)

where T
µν

II is the energy–momentum tensor of the radiation field, Fµν

II , and T
µν

I is the energy–
momentum tensor of the generalized Coulomb field, Fµν

I , in addition to the cross terms between
the two fields. Teitelboim showed that ∂T

µν

I

/
∂xµ = 0 and ∂T

µν

II

/
∂xµ = 0 everywhere outside

the worldline of the particle.
A pleasant property of T

µν

I (see [12]) is that the volume integral of T 0ν
I taken at a fixed

point of time over the whole 3-space outside the particle (considered as a sphere of vanishing
small radius) is given by the particle’s velocity and acceleration at the same point of time.
Hence, the resulting 4-momentum, P ν

I , is a state function of the particle although it represents
the energy–momentum of type I of the particle’s field. This 4-momentum is found to be

P ν
I = (

P 0
I , �PI

) = m0U
ν − 2

3c3
Q2Aν (4)

where Q is the charge of the particle, Uν = γ (c, �v), γ = 1/
√

1 − v2/c2 its 4-velocity and Aν

its 4-acceleration,

Aν = (A0, �A) = dUν

dτ
= γ 2

(
γ 2 �v

c
· �a, �a + γ 2

( �v
c

· �a
) �v

c

)
=

( �v
c

· �A, �A
)

. (5)

The physical rest mass m0 in equation (4) is renormalized from the electromagnetic mass
(divergent for a point particle) and a possible non-electromagnetic contribution.

The last term in equation (4) is the Schott [13, 14] 4-momentum,

P ν
S = − 2

3c3
Q2Aν. (6)

The Schott energy is

cP 0
S = − 2

3c2
Q2A0 = − 2

3c3
Q2γ 4�v · �a. (7)

Note that the system has an energy and a momentum not only due to the rest mass and velocity,
but also due to the acceleration. The Schott energy P 0

S is an acceleration energy [15–17], and
�PS an acceleration momentum [12], and both come from the field of the particle.

As opposed to �P ν
I the radiation 4-momentum �P ν

II depends upon the whole prehistory
of the particle. According to the version of Larmor’s relativistic formula valid in inertial
reference frames, the radiated 4-momentum per proper time is

dP ν
II

dτ
= 2

3c5
Q2g2Uν = RUν (8)

where g = (AµAµ)1/2 is the proper acceleration and Rc2 = (2/3c3)Q2g2 is the radiated
power.
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Since the emitted energy and momentum are conserved during the motion away from the
charge, the 4-momentum in the radiation field at the point of time T may be expressed as

P ν
II =

∫ τ(T )

−∞
RUν dτ (9)

and the total 4-momentum of particle and field becomes

P ν = P ν
I + P ν

II = m0U
ν + P ν

S + P ν
II . (10)

When the particle is free, P ν is constant. If an external force, Fν , is acting we get

Fν = Ṗ ν = m0A
ν + Ṗ ν

S + RUν (11)

where the dot denotes differentiation with respect to the proper time τ of the particle.
This is the Lorentz–Dirac equation of motion (in our notation). From the scalar products
UνU

ν = −c2, UνA
ν = 0, UνȦ

ν = −g2 it follows that UνF
ν = 0. This means that Fν may

be expressed as

Fν = γ

( �v
c

· �F, �F
)

(12)

where �F is a 3-force, and F 0 is the work per unit proper time. Note that it is not possible to
express RUν (or Ṗ ν

S) in the form (12). This means that the amounts of radiated energy and
momentum cannot be fully accounted for by one single force acting upon the particle.

According to equation (8) R�v is the radiated momentum per unit laboratory time. A force
of this magnitude acting upon the particle produces a power Rv2 which is different from the
radiated power Rc2. In two examples below we shall see how the Schott energy and Schott
momentum take part in the radiation process.

The equation of motion (11) is usually written as

Fν = m0A
ν − �ν (13)

where �ν is the Abraham vector

�ν = −Ṗ ν
S − RUν. (14)

It may be written as

�ν = γ

( �v
c

· ��, ��
)

(15)

where �� is the field reaction force,

�� = −d �PS

dT
− R�v (16a)

and −R�v is the radiation reaction force [18] which always acts against the motion. The power
due to the Abraham vector is

�v · �� = c

γ
�0 = −c dP 0

S

dT
− Rc2. (16b)

From equations (13) and (16) one gets

�F = 1

γ
m0 �A − �� = m0

d �U
dT

+
d �PS

dT
+ R�v (17a)

�v · �F = c

γ
m0A

0 − c

γ
�0 = m0

c dU 0

dT
+

c dP 0
S

dT
+ Rc2 (17b)



404 E Eriksen and Ø Grøn

where �PS is the Schott momentum and cP 0
S the Schott energy. Hence the power provided

by the external force is equal to the change of kinetic energy of the charge plus the change
of Schott energy per unit time plus the radiated power. It is tempting to conclude that the
left-hand side of equation (17b) and the first term on the right-hand side vanish for circular
motion with constant speed, so that the radiated energy comes from the Schott energy. Below
we shall show that this is not the case.

2. Some special types of motion

In this section we shall consider motions where �ν = 0 and motions where A0 = 0. In the
first case the radiation energy comes from the Schott energy. In the second case the Schott
energy is zero.

(i) �ν = 0
Putting �ν = 0 in equations (13) and (14) we get

RUν = −Ṗ ν
S (18)

and

Fν = m0A
ν. (19)

The first equation shows that the radiated 4-momentum comes from the Schott
4-momentum. That is, the sum of the 4-momentum in the radiation field and the Schott
4-momentum is constant. According to equation (19) the external force is not engaged in
the radiation in this case. The charge moves as if it is neutral.

Using equation (6), equation (18) may be expressed as

AµAµUν = Ȧνc2. (20)

Taking the scalar product with Aν we get AνȦ
ν = 0, i.e.

AνA
ν = constant (21)

R = constant. (22)

Thus, in a motion where �ν = 0, the proper acceleration g = (AνA
ν)1/2 is constant, and

the particle radiates energy at a constant rate. The Schott energy decreases at the same
rate. Equation (20) may now be written as

g2Uν = c2 d2Uν

dτ 2
(23)

where g is constant.
The equation has the following solutions:

(a) Particle at rest or moving along a straight line with constant velocity (g = 0).
(b) Hyperbolic motion and Lorentz transforms of this.

In the case of hyperbolic motion along the X-axis

X = c2

g
cosh

gτ

c
, T = c

g
sinh

gτ

c
(24)

which gives

Uν = g

c
(X, cT , 0, 0), (25a)
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Figure 1. Charged particle in circular motion with constant velocity v. �PS is the Schott momentum.

Aν = g2

c2
(cT ,X, 0, 0), (25b)

Ȧν = g3

c3
(X, cT , 0, 0). (25c)

It follows that
2

3c3
Q2Ȧν = RUν (26)

which confirms that the Abraham vector �ν = 0.
(ii) A0 = 0

Putting A0 = 0 in equation (5) we find dU 0/dτ = 0 and �v · �a = 0, i.e. γ and v are
constants and �a ⊥ �v. In this case the 4-acceleration may be written as

Aν = (0, γ 2�a). (27)

From equations (6) and (7) we then get the Schott energy

cP 0
S = − 2

3c2
Q2A0 = 0 (28a)

and the Schott momentum

�PS = − 2

3c3
Q2 �A = − 2

3c3
Q2γ 2�a. (28b)

According to equation (17) the external force is

�F = γm0�a +
d �PS

dT
+ R�v (29a)

�v · �F = Rc2. (29b)

The last equation shows that the radiated energy is supported by the tangential component
of the external force. The radiated energy per unit time is equal to the power provided by
this force.

However, the radiated momentum is not due only to this force. In order to see
this most clearly we consider circular motion with radius r and constant speed v (see
figure 1).

In this case the Schott 4-momentum is

�PS = − 2

3c3
Q2γ 2�a = 2

3c3
Q2γ 2 v2

r
�er (30)
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where �er is the unit vector in the radial direction. Its rate of change with respect to the
laboratory time is given by d�e/dT = �v/r , which gives

d �PS

dT
= 2

3c3
Q2γ 2 v2

r2
�v. (31)

Putting �F = �F ‖ + �F⊥ where �F ‖ and �F⊥ are the components of �F along and orthogonal
to �v, we get from equations (29a) and (31)

�F⊥ = γm0�a (32a)

�F ‖ = d �PS

dT
+ R�v (32b)

and further from the earlier result in equation (29b),

�v · �F ‖ = Rc2. (32c)

For an uncharged particle the centripetal force �F⊥ is the only force. In the case of a
charged particle a tangential force �F ‖ is necessary to keep the velocity constant. The
radiated energy comes from the work performed by this force. The radiated momentum
is partly due to �F ‖ and partly due to the change of direction of the Schott momentum
vector.

3. Conclusion

The theory of electromagnetism contains a somewhat hidden ingredient which is essential in
obtaining an understanding of the energy–momentum budget of a radiating charge and its field:
the Schott energy–momentum which is part of the energy–momentum in the field co-moving
with the charge.

This is seen very clearly in connection with a uniformly accelerated charge. Then the
field reaction force vanishes. Hence a charged and a neutral particle with equal mass acted
upon by equal forces, move beside each other and gain the same kinetic energy. But the charge
radiates and the neutral particle does not. So, where does the radiation energy come from?
The answer is that part of its Schott energy is transformed to radiation energy.

We have also seen that there exist motions where the particle radiates although the Schott
energy is constant. This is the case for curved motion with constant speed.
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